Some New Characterizations of Parallel Factorable Surface in Riemannian Three Dimensional Heisenberg Group

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Characterizations of Hopf Group on Fuzzy Topological Spaces

In this paper, some fundamental concepts are given relating to fuzzytopological spaces. Then it is shown that there is a contravariant functorfrom the category of the pointed fuzzy topological spaces to the category ofgroups and homomorphisms. Also the fuzzy topological spaces which are Hopfspaces are investigated and it is shown that a pointed fuzzy toplogicalspace having the same homotopy typ...

متن کامل

Some Results on Infinite Dimensional Riemannian Geometry

In this paper we will investigate the global properties of complete Hilbert manifolds with upper and lower bounded sectional curvature. We shall prove the Focal Index lemma that will allow us to extend some classical results of finite dimensional Riemannian geometry as Rauch and Berger theorems and the Topogonov theorem in the class of manifolds in which the Hopf-Rinow theorem holds.

متن کامل

NEW CHARACTERIZATIONS OF SOME Lp-SPACES

For a complete measure space (X,Σ,μ), we give conditions which force Lp(X,μ), for 1 ≤ p < ∞, to be isometrically isomorphic to p(Γ) for some index set Γ which depends only on (X,μ). Also, we give some new characterizations which yield the inclusion Lp(X,μ)⊂ Lq(X,μ) for 0<p < q.

متن کامل

Some new characterizations of Sobolev spaces

Abstract: This talk is on some new characterizations of Sobolev spaces which are based on non-local functionals whose roots are from definition of the fractional Sobolev spaces. New types of the Poincare inequality, the Sobolev inequality, and the Reillich Kondrachov compactness theorem will also be discussed. Possible applications for image processing will be mentioned. This is partially joint...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi

سال: 2019

ISSN: 2146-538X

DOI: 10.17714/gumusfenbil.440949